Q1.

2	(a)		x x								
			1	(-1	for each	error or omission)	B2		[2]	
	(b)		heat g	pained (s		.05m x 235 x (1340	× Δ <i>T</i> –300) + 0.05 <i>m</i> × 105				
										[5]	
	(c)		300,000				neter			[1]	
Q2.											
6			0	-	+		- C - F - C	, -		B2	r- 1
			+	+	0	(-1 for each erro		To	tal	B2 B2	[6] [6]
Q3.											
3	(a)		solid to lie	quid		equired to converterature/at melting	t unit mass/1 kg of		M1 A1	[2]	
	(b)	(i)		equired	to melt		$\times 2.1 \times 10^3 \times 15 (= 10^3 \times 10^3 \times 10^3 \times 10^3)$		C1 C1 A1	[3]	
		(ii)	200×4.2 $T = 16^{\circ}$ [allow 2 right]	2 × (28 C narks if narks if	$T = 2$ $\Delta T = 2$ $C = 2$ $C = 2$	1 × 4.2 × <i>T</i> + 8676)	C1 C1 A1	[3]	
Q4.											
3	(a)		dient of gra gradient va			re of) the sensitivity rature	y			M1 A1	[2]
	(b)	TI	$10 \pm 20 \Omega c$ $K = T / ^{\circ}C$ experature is	+ 273.1	5 (allow	5.0 ± 0.2 °C 273.2)				C1 C1 A1	[3]

Q5.

2		or m kinet	[1] (1) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	B1 B1 B1	[3]
				M1 A1	[2]
	(c)	(ii)	$67.2 = 0.205 \times L$ $L = 328 \text{ kJ kg}^{-1}$ more energy (than calculated) melts ice	C1 C1 A1 M1 A1	[3] [2]
Q6.			so, (calculated) E is lower than the decepted value		[-]
3	(a)	(all	reasing separation of molecules / breaking bonds between molecules ow atoms/molecules, overcome forces) ng work against atmosphere (during expansion)	B1 B1	[2]
	(b)	(i)	 1 either bubbles produced at a constant rate / mass evaporates/lost at constant rate / find mass loss more than once and this rate should be constant or temperature of liquid remains constant 2 to allow/cancel out/eliminate/compensate for heat losses (to atmosphere) (do not allow 'prevent'/'stop') use of power × time = mass × specific latent heat (70 – 50) × 5 × 60 = (13.6 – 6.5) × L L = 845 J g⁻¹ 	B1 B1 C1 C1 A1	[1] [1]
Q7.					
3	(a)		1 deg C corresponds to $(3840-190)$ / $100~\Omega$ for resistance $2300~\Omega$, temperature is $100\times(2300-3840)$ / $(190-3840)$ temperature is $42~^{\circ}$ C either $286~\text{K} = 13~^{\circ}$ C or $42~^{\circ}$ C = $315~\text{K}$ thermodynamic scale does not depend on the property of a substance so change in resistance (of thermistor) with temperature is non-linear	C A B M	1 [2] 1 1
	(b)	hea 396 θ = (an	at gained by ice in melting = $0.012 \times 3.3 \times 10^5$ J = 3960 J at lost by water = $0.095 \times 4.2 \times 10^3 \times (28 - \theta)$ 60 + $(0.012 \times 4.2 \times 10^3 \times \theta)$ = $0.095 \times 4.2 \times 10^3 \times (28 - \theta)$ = $0.095 \times 10^5 \times (28 - \theta)$ = $0.095 \times (28 $	C C C A	1 1

Q8.

4	(a)	+q:	therm	ease in internal energy al energy / heat supplied to the system done on the system	B1 B1 B1	[3]
	(b)	(i)	per u	mal) energy required to change the state of a substance nit mass ut any change of temperature	M1 A1 A1	[3]
		(ii)	great great	evaporating er change in separation of atoms/molecules er change in volume fies each difference correctly with ΔU and w	M1 M1 A1	[3]
Q9.						
3	(a	th	e state ithout a	ally equal to) quantity of (thermal) energy required to change of unit mass of a substance any change of temperature mark for definition of specific latent heat of fusion/vaporisation)	M1 A1	[2]
	(t	o) ei		energy supplied = 2400 × 2 × 60 = 288000 J energy required for evaporation = 106 × 2260 = 240000 J difference = 48000 J	C1 C1	
		or		rate of loss = 48000 J rate of loss = 48000 / 120 = 400 W energy required for evaporation = 106 × 2260 = 240000 J power required for evaporation = 240000 / (2 × 60) = 2000 W rate of loss = 2400 – 2000 = 400 W	A1 (C1) (C1) (A1)	[3]
Q10.	•					
3	(a)			tential energy and kinetic energy of atoms/molecules/particles to random (distribution)	M1 A1	[2]
	(b)	(i)	moled no ch	tice structure is 'broken'/bonds broken/forces between cules reduced (not molecules separate) ange in kinetic energy, potential energy increases al energy increases	B1 M1 A1	[3]
		(ii)		molecules/atoms/particles move faster/ <c²> is increasing kinetic energy increases with temperature (increases) ange in potential energy, kinetic energy increases al energy increases</c²>	B1 M1 A1	[3]

Q11.

1	(a) (i) (ii)	$Q = mc\Delta\theta$	[5	1
	(b)	e.g. heat losses, power not constant etc $M1$ (do not allow if releated to s.h.c., rather than l.h.c.) effect on value for L $A1$	[2	:]
Q12				
3	(a)	pV/T = constant		[3]
3	(b) (i)	$\Delta U = q + w$ symbols identified correctly		[2]
	(ii)	q is zero		[4]
Q13	•			
7		variation is non-linear wo possible temperatures	1	[2]
	(b) 6	 e.g. 1. small thermal capacity/measure Δθ of small object /short response time 2 readings taken at a point/physically small 3 can be used to measure temperature difference 4 no power supply required etc. (any two, 1 mark each) 	2	[2]

Q14.

3	(a)	correct statement, words or symbols	B1		[1]
	(b)(i)	$w = p\Delta V$ = 1.03 × 10 ⁵ × (2.96 × 10 ⁻² – 1.87 × 10 ⁻⁵) = (-) 3050 J	C1 A1		[2]
	(ii)		B1		[1]
	, ,	$\Delta U = 4.05 \times 10^4 - 3050 = 37500 \text{ J}$ no e.c.f. from (a) penalise 2 sig.fig. once only	A1		[1]
	(c)	number of molecules = N_A energy = 37500 / (6.02 × 10 ²³) = 6.2 × 10 ⁻²⁰ J (accept 1 sig.fig.)	C1 A1		[2]
Q15					
2 (a)	(i)	idea of heat lost (by oil) = heat gained (by thermometer) $32 \times 1.4 \times (54 - t) = 12 \times 0.18 \times (t - 19)$ $t = 52.4$ °C		C1 C1 A1	[3]
	(ii)	either ratio (= 1.6/54) = 0.030 or (=1.6/327) = 0.0049		A1	[1]
(b)		nistor thermometer (allow 'resistance thermometer') use small mass/thermal capacity		B1 B1	[2]
(c)	furth	g point temperature is constant er comment neating of bulb would affect only rate of boiling		M1 A1	[2]
Q16					
2	à	Thermal) energy / heat required to convert unit mass of solid to liquid t its normal melting point / without any change in temperature reference to 1 kg or to ice → water scores max 1 mark)		M1 A1	[2]
	(b)	i) To make allowance for heat gains from the atmosphere		B1	[1]
	(e.g. constant rate of production of droplets from funnel constant mass of water collected per minute in beaker (any sensible suggestion, 1 mark) 		B1	[1]
	(i	i) mass melted by heater in 5 minutes = $64.7 - \frac{1}{2} \times 16.6 = 56.4$ g $56.4 \times 10^{-3} \times L = 18$ $L = 320 \text{ kJ kg}^{-1}$ (Use of $m = 64.7$, giving $L = 278 \text{ kJ kg}^{-1}$, scores max 1 mark use of $m = 48.1$, giving $L = 374 \text{ kJ kg}^{-1}$, scores max 2 marks)		C1 C1 A1	[3]

Q17.

4	(a)	ΔU =	q + w (allow correct word equation)	В1	[1]
	(b)	eithei or	kinetic energy constant because temperature constant potential energy constant because no intermolecular forces so no change in internal energy kinetic energy and potential energy both constant (M1) so no change in internal energy (A1) reason for either constant k.e. or constant p.e. given (A1)	M1 M1 A1	[3]
Q18	3.				
3	(a)	e.g.	two objects of different masses at same temperature same material would have different amount of heat (A1) temperature shows direction of heat transfer (M1) from high to low regardless of objects (A1) when substance melts/boils (M1) heat input but no temperature change (A1) two, M1 + A1 each, max 4		[4]
	(b)		energy losses (to the surroundings) either increase as the temperature rises or rise is zero when heat loss = heat input		[2]
			idea of input <u>power</u> = maximum <u>rate</u> of heat loss power = $m \times c \times \Delta \theta / \Delta t$ 54 = 0.96 × $c \times 3.7 / 60$ $c = 910 \text{ J kg}^{-1} \text{ K}^{-1}$	C1	[3]
				[Tota	al: 9]
Q19).				
2	(a)		of kinetic and potential energies of molecules / particles / atomsdom (distribution)		[2]
	(b)	+q:	t: increase in internal energy heating of / heat supplied to system work done on system	B1	[3]
	(c)		work done = $p\Delta V$ = $1.0 \times 10^5 \times (2.1 - 1.8) \times 10^3$ = 30 J	M1	
			$w = 30 \text{ J}, q = 0 \text{ so } \Delta U = 30 \text{ J}$	A1	[3]
		(ii)	these three marks were removed, as insufficient data was given in the c		
				[Tota	I: 8]

Q20.

2	(a)	tem	perature			assuming ith temperat		change	of	property	with	B1 B1	[2]	
	(b)	(i)	does not	depend	on the prop	perty of a su	bstance					B1	[1]	
		(ii)	temperat	ure at w	hich atoms	have minim	um/zero	energy				B1	[1]	I
	(c)	(i)	323.15 K	Ç.								A1	[1]	
		(ii)	30.00 K									A1	[1]	I
Q21.	•													
3	(8				pheres is the energy betwe	e same een the sphe	res					31 31	[2]	
	(I	o) (i	3800 :	= m × c = m × 4. = 38 gs	$2 \times (42 - 18)$	<i>n</i> is mass pe)	r second	İ			C	C1 C1 A1	[3]	
		(ii			nergy is lost erestimate	to the surrou	<u>indings</u>					//1 \1	[2]	
Q22.														
3	(a)	or	liquid	volume	<< volume	9 – 1.00 × 10 e of vapour 1.71 × 10 ⁵ (50					M′ A1		2]
	(b)	(i)	1. heatin	g of sys	stem/therma	ıl energy sur	plied to	the syste	em			В1	[1	1]
			2. work	done on	the system							B1	[1]
		(ii)			$(3.71 \times 1.71 \times$							C1 A1		2]

Q23.

3 (a) resonance B1 [1]

(b)
$$Pt = mc \Delta \theta$$
 C1
 $750 \times 2 \times 60 = 0.28 \times c \times (98 - 25)$ C1
 $c = 4400 \text{ J kg}^{-1} \text{ K}^{-1}$ A1 [3]

(use of $\Delta\theta = 73 + 273 \text{ max. } 1/3$) (use of t = 2s not 120 s max. 2/3)

© Cambridge International Examinations 2014

www.maxpapers.com

A1

[2]

Page 3	Mark Scheme	Syllabus	Paper
1 1 968 1	GCE A LEVEL – May/June 2014	9702	42

(c) e.g. some microwave leakage from the cooker e.g. container for the water is also heated (any sensible suggestion)

increase

B1 [1]

Q24.

3 (a) initially, $pV/T = (2.40 \times 10^5 \times 5.00 \times 10^{-4})/288 = 0.417$ M1 finally, $pV/T = (2.40 \times 10^5 \times 14.5 \times 10^{-4})/835 = 0.417$ M1 ideal gas because pV/T is constant (allow 2 marks for two determinations of V/T and then 1 mark for V/T and p constant, so ideal)

© Cambridge International Examinations 2014

Page 3	Mark Scheme	Syllabus	Paper	•
	Cambridge International AS/A Level – October/November 2014	9702	43	
(b) (i	i) work done = $p\Delta V$ = 2.40 × 10 ⁵ × (14.5 – 5.00) × 10 ⁻⁴ = 228 J (<i>ignore sign, not 2 s.f.</i>)		C1 A1	[2]
(ii	i) $\Delta U = q + w = 569 - 228$ = 341 J		M1	